An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Markov Chain Monte Carlo Method for Distributions with Intractable Normalising Constants

We present new methodology for drawing samples from a posterior distribution when (i) the likelihood function or (ii) a part of the prior distribution is only specified up to a normalising constant. In the case (i), the novelty lies in the introduction of an auxiliary variable in a Metropolis-Hastings algorithm and the choice of proposal distribution so that the algorithm does not depend upon t...

متن کامل

Miscellanea An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants

Maximum likelihood parameter estimation and sampling from Bayesian posterior distributions are problematic when the probability density for the parameter of interest involves an intractable normalising constant which is also a function of that parameter. In this paper, an auxiliary variable method is presented which requires only that independent samples can be drawn from the unnormalised densi...

متن کامل

An Adaptive Markov Chain Monte Carlo Method for GARCH Model

We propose a method to construct a proposal density for the Metropolis-Hastings algorithm in Markov Chain Monte Carlo (MCMC) simulations of the GARCH model. The proposal density is constructed adaptively by using the data sampled by the MCMC method itself. It turns out that autocorrelations between the data generated with our adaptive proposal density are greatly reduced. Thus it is concluded t...

متن کامل

Markov Chain Monte Carlo With Mixtures of Mutually Singular Distributions

Markov chain Monte Carlo (MCMC) methods for Bayesian computation are mostly used when the dominating measure is the Lebesgue measure, the counting measure, or a product of these. Many Bayesian problems give rise to distributions that are not dominated by the Lebesgue measure or the counting measure alone. In this article we introduce a simple framework for using MCMC algorithms in Bayesian comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2006

ISSN: 1464-3510,0006-3444

DOI: 10.1093/biomet/93.2.451